Respuesta :
Answer:
Match each of the trigonometric expressions below with theequivalent non-trigonometric function from the following list.Enter the appropiate letter(A,B, C, D or E)in each blank
A . tan(arcsin(x/8))
B . cos (arsin (x/8))
C. (1/2)sin (2arcsin (x/8))
D . sin ( arctan (x/8))
E. cos (arctan (x/8))
These are the spaces to fill out :
.. ..........x/64 (sqrt(64-x^2))
.............x/sqrt(64+x^2)
.............sqrt(64-x^2)/8
..............x/sqrt(64-x^2)
..............8/sqrt(64+x^2)
A. ........tan(arcsin(x/8)) Â =......x/sqrt(64-x^2)
B . Â Â Â cos (arsin (x/8)) Â ....sqrt(64-x^2)/8
Step-by-step explanation:
To solve this we have to find the missing sides to each of the triange discribed in prenthesis thus
A we have the sides of the triangle given by x, 8 and  [tex]\sqrt{8^{2} - x^{2} }[/tex]or  [tex]\sqrt{64 - x^{2} }[/tex]
thus tan(arcsin(x/8)) Â = [tex]\frac{x}{\sqrt{64 - x^{2} }}[/tex] Â =
Therefore  ........tan(arcsin(x/8))  =......x/sqrt(64-x^2)
B
Here we have cos = adjacent/hypotenuse where adjacent side is [tex]\sqrt{64 - x^{2} }[/tex] and hypothenuse = 8 we have [tex]\sqrt{64 - x^{2} }[/tex]/8
B . Â Â Â cos (arsin (x/8)) Â ....sqrt(64-x^2)/8
