Answer:
F = Â 2.57 N .
Explanation:
Given data:
 Diameter of the stone:  d  = 35  c m  = 0.35 m
Radius:  r  =  35/2  cm = 17.5 cm = 0.175 m
Initial angular velocity: ω₀  =  200  rpm = (200 )(2π/60) rad/s = 20.94 rad/s
Final angular velocity Â
ω f  =  (1.00-0.10)*(200  rpm) = 180 rpm = (180 )(2π/60) rad/s = 18.85 rad/s
Mass of the stone Â
m  =  28  K g
Coefficient of kinetic friction: μ k  =  0.2
Time: t  = 10  s
Part a:
By using the equation of motion with uniform angular acceleration we will find out the angular acceleration of grindstone:
ω f  =  ω₀  + α*t
⇒  α = (ω f-ω₀)/t = (18.85 rad/s - 20.94 rad/s)/(10 s) = - 0.21 rad/s²
A negative sign shows that the wheel is decelerating.
Part b:
Consider the rim of grindstone as a solid disk, therefore, the moment of inertia Â
I  =  0.5*m*r²
We know that:
Torque = Force  *  Perpendicular distance
τ = (μ k*F  )* r    (I)
Also:
τ  =  I *α  = (0.5*28 Kg*(0.175 m)²)(0.21 rad/s²) = 0.09  N-m
Equation (I) becomes,
τ  =  (μ k*F  )* r  ⇒  F = τ / (μ k*r)
⇒  F = (0.09  N-m) / (0.20*0.175 m)* = 2.57 N
So, the tradesman pressing the knife against grindstone by  2.57 N .