Respuesta :
Answer:
The LARGEST POSSIBLE SACK of flour  is 11.24  pounds.
Step-by-step explanation:
Let us assume the weight of 1 sack of sugar  = m pounds
And the weight of 1 sack of flour = n pounds
Now, weight of 2 sacks of sugar  = 2 x ( Weight of 1 sack of sugar)
                            = 2 x (m)   = 2 m
Also, weight of 3 sacks of flour  = 3 x ( Weight of 1 sack of flour)
                            = 3 x (n)   = 3 n
Given : Weight of (2 sacks of sugar  +  3 sacks of flour) ≤ 40 pounds
⇒ 2  m +  3 n  ≤ 40 ..... (1)
Similarly, Weight of (1 sack of flour) ≤  2 sacks of sugar  +  5 pounds
⇒ n  ≤  2 m  + 5  .... (2)
Now, solving (1) and (2) for the values of m and n, we get:
2  m +  3 n  ≤ 40
n  ≤  2 m  + 5
Put  n  = 2 m  + 5 in (1)
We get: 2  m +  3 n  = 40  ⇒ 2  m +  3 (2 m  + 5)  = 40
or, 2 m + 6 m + 15 = 40
or, 8 m = 25
or, m = 25/8 Â = Â 3.12
So,  m  CAN NOT BE MORE THAN 3.12 pounds
Solving for n = 2 m + 5 = 2(3.12) + 5 Â = 11.24 pounds
So,  n  CAN NOT BE MORE THAN  11.24  pounds
Hence, the LARGEST POSSIBLE SACK of flour  is 11.24  pounds.
Answer:
23/2 is the correct answer
Step-by-step explanation:
ur welcome