Respuesta :

The volumes of the given cylinders ;

1. 125.6 cubic inches, 2. 62,800 cubic cm, 3. 2,009.6 cubic mm, and 4. 2,289.26 cubic feet.

The volumes of the given spheres;

1. 523.33 cubic cm, 2. 7,234.56 cubic inches, 3. 4.1866 cubic feet, and 4. 38,772.92 cubic mm.

Step-by-step explanation:

Step 1:

The volume of any cylinder is given by π times the product of the square of the radius (r²) and the height (h).

The volume of any cylinder, [tex]V =\pi r^{2} h[/tex].

Step 2:

1. d = 4 inches, r = 2 inches, h = 10 inches, [tex]V =\pi r^{2} h[/tex] [tex]= 3.14 (2^{2} )(10)[/tex] [tex]= 125.6[/tex] cubic inches.

2. r = 20 cm, h = 50 cm, [tex]V =\pi r^{2} h[/tex] [tex]= 3.14 (20^{2} )(50)[/tex] [tex]= 62,800[/tex] cubic cm.

3. d = 16 mm, r = 8 mm, h = 10 inches, [tex]V =\pi r^{2} h[/tex] [tex]= 3.14 (8^{2} )(10)[/tex] [tex]= 2,009.6[/tex] cubic mm.

4. r = 9 feet, h = 9 feet, [tex]V =\pi r^{2} h[/tex] [tex]= 3.14 (9^{2} )(9)[/tex] [tex]= 2,289.06[/tex] cubic feet.

Step 3:

The sphere's volume is given by multiplying [tex]\frac{4}{3}[/tex] with π and the cube of the radius (r³).

The sphere's volume , [tex]V =[/tex] [tex]\frac{4}{3} \pi r^{3}[/tex].

Step 4:

1. r = 5 cm, [tex]V =[/tex] [tex]\frac{4}{3} \pi r^{3}[/tex], [tex]V = \frac{4}{3} (3.14) (5^{3}) = 523.333[/tex] cubic cm.

2. d = 24 inches, r = 12 inches, [tex]V =[/tex] [tex]\frac{4}{3} \pi r^{3}[/tex], [tex]V = \frac{4}{3} (3.14) (12^{3}) = 7,234.56[/tex]  cubic inches.

3. r = 1 foot, [tex]V =[/tex] [tex]\frac{4}{3} \pi r^{3}[/tex], [tex]V = \frac{4}{3} (3.14) (1^{3}) = 4.18666[/tex] cubic feet.

4. d = 42 mm, r = 21 mm, [tex]V =[/tex] [tex]\frac{4}{3} \pi r^{3}[/tex], [tex]V = \frac{4}{3} (3.14) (21^{3}) = 38,772.92[/tex]  cubic mm.

The answer is 69420 chain weed smoker like Snoopy Dogg

If monke had circle, he would throw away and eat banananaa

BOB THE MF BUILDER WAS HERE

good job