Answer:
a) dV(s)  =  15,386 cm³
b) dS(s) = 4,396 cm²
c) dV(s)/V(s) = 1,07 %   and  dS(s)/ S(s)  =  0,71 %
 Â
Step-by-step explanation:
a) The volume of the sphere is
V(s) = (4/3)*π*x³     where x is the radius
Taking derivatives on both sides of the equation we get:
dV(s)/ dr  =  4*π*x²   or
dV(s)  =  4*π*x² *dr
the possible propagated error in cm³ in computing the volume of the sphere is:
dV(s)  = 4*3,14*(7)²*(0,025)
dV(s)  =  15,386 cm³
b) Surface area of the sphere is:
V(s) = (4/3)*Ï€*x³ Â
dV(s) /dx  =  S(s) = 4*π*x³
And
dS(s) /dx  = 8*π*x
dS(s) = 8*Ï€*x*dx
dS(s) = 8*3,14*7*(0,025)
dS(s) = 4,396 cm²
c) The approximates errors in a and b are:
V(s) =  (4/3)*π*x³   then
V(s) = (4/3)*3,14*(7)³
V(s) = 1436,03 cm³
And  the possible propagated error in volume is from a)  is
dV(s)  =  15,386 cm³
dV(s)/V(s)  = [15,386 cm³/1436,03 cm³]* 100
dV(s)/V(s) = 1,07 %
And for case b)
dS(s) = 4,396 cm²
And the surface area of the sphere is:
S(s) =  4*π*x³     ⇒  S(s) =  4*3,14*(7)²   ⇒ S(s) = 615,44 cm²
dS(s) = 4,396 cm²
dS(s)/ S(s)  =  [ 4,396 cm²/615,44 cm² ] * 100
dS(s)/ S(s) Â = Â 0,71