Respuesta :
As per the polar coordinates, the limits of the integration is written as âŹDf(rcosâĄ(θ),rsinâĄ(θ))rdrdθ.
What is meant by polar coordinates?
In math, polar coordinates refer a pair of coordinates locating the position of a point in a plane, the first being the length of the straight line ( r ) connecting the point to the origin, and the second the angle ( θ ) made by this line with a fixed line.
Here we have  the limits of integration and evaluate the integral to find the volume. for the polar coordinates.
Here we have the polar representation of a point P is the ordered pair (r,θ) where r is the distance from the origin to P and θ is the angle the ray through the origin and P makes with the positive x-axis.
Then the polar coordinates r and θ of a point (x,y) in rectangular coordinates satisfy
=> r=x² + x²    and    tanâĄ(θ)=yx;
Here the rectangular coordinates x and y of a point (r,θ) in polar coordinates satisfy and x=rcosâĄ(θ) and y=rsinâĄ(θ).
Then the area element dA in polar coordinates is determined by the area of a slice of an annulus and is given by dA=rdrdθ.
Here we have to convert the double integral âŹDf(x,y)dA to an iterated integral in polar coordinates,
Now, we have to substitute rcosâĄ(θ) for ,x, rsinâĄ(θ) for ,y, and rdrdθ for dA to obtain the iterated integral
=> âŹDf(rcosâĄ(θ),rsinâĄ(θ))rdrdθ.
To know more about Polar coordinates here.
https://brainly.com/question/11657509
#SPJ4